Logo Haohan's Blog
  • Home
  • About
  • Education
  • Experiences
  • Projects
  • More
    Skills Featured Posts Recent Posts Accomplishments
  • Posts
  • Notes
  • English
    English 简体中文
  • Dark Theme
    Light Theme Dark Theme System Theme
Logo Inverted Logo
  • Posts
  • Examples
    • Introduction
    • Category
      • Sub-Category
        • Rich Content
    • Markdown Sample
    • Shortcodes Sample
  • Deep Learning (Pytorch)
    • Chapter 2 Preparation
    • Chapter 3 Linear Regression
    • Chapter 4 Multilayer Perceptrons
  • Quant
    • Multi-Factors Model
      • Performance Attribution
  • Linear Models
    • Linear Regression
    • Linear Regression and Stats
    • Linear Regression in Quant
      • Conceptions
      • Assumptions
      • Coefficients
      • R Square
      • R Square and Corr
  • Matrix Cookbook
    • Matrix Basic
      • Notations
      • Basics
  • Tips
    • Ubuntu
      • Easyconnect
    • SFTP
    • Vscode remote ssh
Hero Image
Basics

0.1 Basic Content $$ \begin{align} (\boldsymbol{AB})^{-1} &= \boldsymbol{B}^{-1}\boldsymbol{A}^{-1} \cr (\boldsymbol{ABC\cdots})^{-1} &= \cdots\boldsymbol{C}^{-1}\boldsymbol{B}^{-1}\boldsymbol{A}^{-1} \cr (\boldsymbol{A}^\top)^{-1} &= (A^{-1})^\top \cr (\boldsymbol{A} + \boldsymbol{B})^\top &= \boldsymbol{A}^\top + \boldsymbol{B}^\top \cr (\boldsymbol{AB})^\top &= \boldsymbol{B}^\top\boldsymbol{A}^\top \cr (\boldsymbol{ABC\cdots})^\top &= \cdots\boldsymbol{C}^\top\boldsymbol{B}^\top\boldsymbol{A}^\top \cr (\boldsymbol{A}^{H})^{-1} &= (\boldsymbol{A}^{-1})^{H} \cr (\boldsymbol{A} + \boldsymbol{B})^H &= \boldsymbol{A}^H + \boldsymbol{B}^H \cr (\boldsymbol{AB})^H &= \boldsymbol{B}^H\boldsymbol{A}^H \cr (\boldsymbol{ABC\cdots})^H &= \cdots\boldsymbol{C}^H\boldsymbol{B}^H\boldsymbol{A}^H \end{align} $$ 0.2 Trace $$ \begin{align} \text{TR}(\boldsymbol{A}) &= \sum_{i}A_{ii} \cr \text{TR}(\boldsymbol{A}) &= \sum_{i}\lambda_{i}, \quad \lambda_{i}=\text{eig}(\boldsymbol{A})_{i} \cr \text{TR}(\boldsymbol{A}) &= \text{TR}(\boldsymbol{A}^\top) \cr \text{TR}(\boldsymbol{AB}) &= \text{TR}(\boldsymbol{BA}) \cr \text{TR}(\boldsymbol{A+B}) &= \text{TR}(\boldsymbol{A}) + \text{TR}(\boldsymbol{B}) \cr \text{TR}(\boldsymbol{ABC}) &= \text{TR}(\boldsymbol{BCA}) = \text{TR}(\boldsymbol{CAB}) \cr \boldsymbol{a}^\top\boldsymbol{a} &= \text{Tr}(\boldsymbol{aa}^\top) \end{align} $$

  • Linear Algebra
  • Matrix
Monday, November 25, 2024 | 2 minutes Read
Hero Image
Notations

With reference to The Matrix Cookbook 0.1 Notation and Nomenclature Notations $\boldsymbol{A}$ $\boldsymbol{A}_{ij}$ $\boldsymbol{A}_i$ $\boldsymbol{A}^{ij}$ $\boldsymbol{A}^{n}$ $\boldsymbol{A}^{-1}$ $\boldsymbol{A}^{+}$ $\boldsymbol{A}^{1/2}$ $(\boldsymbol{A})_{ij}$ $\boldsymbol{A}_{ij}$ $[\boldsymbol{A}]_{ij}$ $\boldsymbol{a}$ $\boldsymbol{a}_i$ $a_i$ $a$ $\mathfrak{R}z$ $\mathfrak{R}\boldsymbol{z}$ $\mathfrak{R}\boldsymbol{Z}$ $\mathfrak{F}z$ $\mathfrak{F}\boldsymbol{z}$ $\mathfrak{F}\boldsymbol{Z}$ $\det(\boldsymbol{A})$ $\text{Tr}(\boldsymbol{A})$ $\text{diag}(\boldsymbol{A})$ $\text{eig}(\boldsymbol{A})$ $\text{vec}(\boldsymbol{A})$ $\text{sup}$ $||\boldsymbol{A}||$ $\boldsymbol{A}^\top$ $\boldsymbol{A}^{-\top}$ $\boldsymbol{A}^{*}$ $\boldsymbol{A}^H$ $\boldsymbol{A}\circ\boldsymbol{B}$ $\boldsymbol{A}\otimes\boldsymbol{B}$ $\boldsymbol{0}$ $\boldsymbol{I}$ $\boldsymbol{J}^{ij}$ $\boldsymbol{\Sigma}$ $\boldsymbol{\Lambda}$ Nomenclature Matrix Matrix indexed for some purpose Matrix indexed for some purpose Matrix indexed for some purpose

  • Linear Algebra
  • Matrix
Monday, November 25, 2024 | 2 minutes Read
Navigation
  • About
  • Education
  • Experiences
  • Projects
  • Skills
  • Featured Posts
  • Recent Posts
  • Accomplishments
Contact me:
  • zhhohoh27@gamil.com
  • online727
  • Haohan Zhao
  • +86 19551998168

Liability Notice: This site is built on hugo and github pages and uses the hugo-toha theme. The site is used for personal blogging, all content is owned by me and does not constitute any relevant advice, if you have any questions, please contact me!


Toha Theme Logo Toha
© 2020 Copyright.
Powered by Hugo Logo