Notations
With reference to The Matrix Cookbook
0.1 Notation and Nomenclature
Notations
$\boldsymbol{A}$
$\boldsymbol{A}_{ij}$
$\boldsymbol{A}_i$
$\boldsymbol{A}^{ij}$
$\boldsymbol{A}^{n}$
$\boldsymbol{A}^{-1}$
$\boldsymbol{A}^{+}$
$\boldsymbol{A}^{1/2}$
$(\boldsymbol{A})_{ij}$
$\boldsymbol{A}_{ij}$
$[\boldsymbol{A}]_{ij}$
$\boldsymbol{a}$
$\boldsymbol{a}_i$
$a_i$
$a$
$\mathfrak{R}z$
$\mathfrak{R}\boldsymbol{z}$
$\mathfrak{R}\boldsymbol{Z}$
$\mathfrak{F}z$
$\mathfrak{F}\boldsymbol{z}$
$\mathfrak{F}\boldsymbol{Z}$
$\det(\boldsymbol{A})$
$\text{Tr}(\boldsymbol{A})$
$\text{diag}(\boldsymbol{A})$
$\text{eig}(\boldsymbol{A})$
$\text{vec}(\boldsymbol{A})$
$\text{sup}$
$||\boldsymbol{A}||$
$\boldsymbol{A}^\top$
$\boldsymbol{A}^{-\top}$
$\boldsymbol{A}^{*}$
$\boldsymbol{A}^H$
$\boldsymbol{A}\circ\boldsymbol{B}$
$\boldsymbol{A}\otimes\boldsymbol{B}$
$\boldsymbol{0}$
$\boldsymbol{I}$
$\boldsymbol{J}^{ij}$
$\boldsymbol{\Sigma}$
$\boldsymbol{\Lambda}$
Nomenclature
Matrix
Matrix indexed for some purpose
Matrix indexed for some purpose
Matrix indexed for some purpose
Matrix indexed for some purpose or The n.th power od a square matrix
The inverse matrix of the matrix $\boldsymbol{A}$
The pseudo inverse matrix of the matrix (see sector Inverse/Pseudo Inverse)
The square root of a matrix (if unique), not elementwise
The $(i,j)$.th entry of the matrix $\boldsymbol{A}$
The $(i,j)$.th entry of the matrix $\boldsymbol{A}$
The $ij$-submatrix, i.e. $\boldsymbol{A}$ with i.th row and j.th column deleted.
Vector (column-vector)
Vector indexed for some purpose
The i.th element of the vector $\boldsymbol{a}$
Scalar
Real part of a scalar
Real part of a vector
Real part of a matrix
Imaginary part of a scalar
Imaginary part of a vector
Imaginary part of a matrix
Determinant of $\boldsymbol{A}$
Trace of the matrix $\boldsymbol{A}$
Diagonal matrix of the matrix $\boldsymbol{A}$
Eigenvalues of the matrix $\boldsymbol{A}$
The vector-version of the matrix $\boldsymbol{A}$ (see section Functions and Operators/Kronecker and Vec Operator)
Supremum of a set
Matrix norm (subscript if any denotes what norm)
Transposed matrix
The inverse of the transposed and vice versa
Complex conjugated matrix
Transposed and complex conjugated matrix (Hermitian)
Hadamard (elementwise) product
Kronecker product
The null matrix. Zero in all entries.
The identity matrix
The single-entry matrix, $1$ at $(i, j)$ and zero elsewhere
A positive definite matrix
A diagonal matrix